5. Ant Colony Optimization
نویسندگان
چکیده
Ant Colony Optimization (ACO) is a paradigm for designing metaheuristic algorithms for combinatorial optimization problems. The first algorithm which can be classified within this framework was presented in 1991 [21, 13] and, since then, many diverse variants of the basic principle have been reported in the literature. The essential trait of ACO algorithms is the combination of a priori information about the structure of a promising solution with a posteriori information about the structure of previously obtained good solutions. Metaheuristic algorithms are algorithms which, in order to escape from local optima, drive some basic heuristic: either a constructive heuristic starting from a null solution and adding elements to build a good complete one, or a local search heuristic starting from a complete solution and iteratively modifying some of its elements in order to achieve a better one. The metaheuristic part permits the lowlevel heuristic to obtain solutions better than those it could have achieved alone, even if iterated. Usually, the controlling mechanism is achieved either by constraining or by randomizing the set of local neighbor solutions to consider in local search (as is the case of simulated annealing [46] or tabu search [33]), or by combining elements taken by different solutions (as is the case of evolution strategies [11] and genetic [40] or bionomic [56] algorithms). The characteristic of ACO algorithms is their explicit use of elements of previous solutions. In fact, they drive a constructive low-level solution, as GRASP [30] does, but including it in a population framework and randomizing the construction in a Monte Carlo way. A Monte Carlo combination of different solution elements is suggested also by Genetic Algorithms [40], but in the case of ACO the probability distribution is explicitly defined by previously obtained solution components. The particular way of defining components and associated probabilities is problem-specific, and can be designed in different ways, facing a trade-off between the specificity of the information used for the conditioning and the number of solutions which need to be constructed before effectively biasing the probability dis-
منابع مشابه
A systematic approach for estimation of reservoir rock properties using Ant Colony Optimization
Optimization of reservoir parameters is an important issue in petroleum exploration and production. The Ant Colony Optimization(ACO) is a recent approach to solve discrete and continuous optimization problems. In this paper, the Ant Colony Optimization is usedas an intelligent tool to estimate reservoir rock properties. The methodology is illustrated by using a case study on shear wave velocity...
متن کاملNew Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کاملOptimization of the total annual cost in a shell and tube heat exchanger by Ant colony optimization technique
This paper examines the total annual cost from economic view heat exchangers based on ant colony optimization algorithm and compared the using optimization algorithm in the design of economic optimization of shell and tube heat exchangers. A shell and tube heat exchanger optimization design approach is expanded based on the total annual cost measured that divided to area of surface and power co...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کامل